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Polarization effects in ionic systems from first principles 
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Received 21 December 1992 

Abstract In this paper a classical applicalion of the Car-Porrinello method in the computer 
simulation of ionic systems is demonstrated. The induction effecls in the inlerionic interactions 
are included in addition to the short-range repulsion and dispersion effects described by effective 
pair potentials. By representing the induced dipoles as a pair of dynamically variable charges 
fixed on the ends of a rod and extending the Lagrangian accordingly, the self-consistent induced 
dipoles at each time step are generated from the values at the previous time step, without !he 
need for explicit minimization. Coulombfield-induced and overlapinduced polarization effects 
are included and these are parameterized by ab iniiio electronic smclure calculations. For 
simple ionic systems it is shown that the neglect of the overlapinduced dipoles leads to a poor 
representation of real systems. 

1. Introduction 

Polarization effects (or induction forces) are normally incorporated into simulations of ionic 
systems via the shell model (see, for example, Sangster and Dixon [I ]  for a review). In the 
shell model an ion is represented by a core and a shell joined to it by a harmonic spring; 
the sum of the core and shell charges is the formal charge of the ion. The polarizability of 
the ion is parameterized by the shell charge and the force constant of the spring. In addition 
to the intercharge coulombic interactions the overlap and dispersion interactions, normally 
represented by a pair potential of the Bom-Mayer (Fumi-Tosi) form, are considered to act on 
the shells. In this way dipoles induced by the Coulomb field and by short-range interactions 
are incorporated so that the induced dipoles are damped at short interionic separations where 
overlap effects become significant. The parameters are obtained by fitting to experimental 
data. At each time step the shells must be relaxed into the selfconsistent energy minimum. 
This is usually done by an iterative steepest-descent method, hut has recently been achieved 
by a conjugate-gradient procedure [2]. 

The most notable success of the shell model, over calculations using simple painvise 
additive rigid-ion potentials, is in improving the phonon dispersion curves of ionic crystals 
131. In liquids, the dynamical behaviour is also affected. Besides lowering the frequencies 
of the high-frequency charge density wave oscillations (analogous to the optic phonons of 
the crystal), inclusion of the polarization effects alters diffusion coefficients [4]. The fluid 
structure is also influenced the most notable feature is a decrease in the similarity of the 
like-pair distribution functions (g++ and g--). In general the changes in fluid structure seem 
to improve the agreement with experimental data-especially where polarizable anions are. 
involved [SI. However, even the shell models do not give good agreement with experiment 
in melts which involve highly polarizing (small) cations and polarizable anions, such as 
MgCI,. The crystal structures of these systems are. also difficult to rationalize on a simple 
ionic basis. In such cases 'covalency' is often invoked to explain the discrepancies, despite 
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the fact that, on electronegativity grounds, these materials ought to be ionic. It seems to 
us worthwhile to explore whether such systems can be described with an ionic model (i.e. 
without invoking charge transfer) which allows for much stronger changes in the intrinsic 
properties of the ions due to environmental effects than are allowed for in the shell model. 

The shell model, as normally used, seems to us a poor basis from which to attempt a more 
generalized description of polarization effects. The shell parameters are chosen empirically 
and the construct of representing the short-range induced dipoles as a consequence of a 
Born-Mayer interaction between shells seems to have no apriori justification. Furthermore, 
the normal shell model only reflects induced dipoles, whereas induced multipoles of higher- 
order must be involved in stabilizing the local structum of some of the target systems 161. 
Higher-order multipoles occur in breathing shell models [7] but they arise as a side effect 
of allowing for environmental effects on the ion polarizability and their values are not well 
controlled. What is required is a computarionally tractable model in which all aspects of 
the polarization phenomenon can be represented and parameterized on the basis of ab initio ’ 
calculations. 

In this paper we introduce a model which goes some way to fulfilling these objectives 
and show how it can be simulated inexpensively. The method avoids the self-consistent 
energy minimization process normally used in shell calculations, via a classical application of 
the Car-Parrinello (CP) method [8,9]. In this way the self-consistent values of the induced 
multipoles at each time step in a molecular dynamics procedure are calculated from the 
values at the previous time step without the need for explicit minimization. Although most 
previous CP work has tended to concentrate on representing electronic effects directly and 
quantum mechanically via density functional theory (DW) there is no reason why such a 
formalism could not be used in a classical sense. Indeed, Sprik [IO, 1 I]  has shown how it 
can be applied to model the permanent and induced dipoles in water in both a pure water 
system and in the study of the solvation of a chloride ion (121. 

In the CP method we include our induced multipole moments as additional degrees of 
freedom via an extended Lagrangian formalism which enables us to systematically derive 
equations of motion for them. Thus the multipoles induced by both Coulomb fields (and 
their gradients) and short-range overlap effects may be seen to arise from a well-defined 
Hamiltonian in which the parameters may be fixed by electronic structure calculations of a 
type previously described 1131. 

Although, as outlined above, our target systems are the alkaline-earth halides and 
chalcogenides, in the present paper we restrict our attention to a careful description of 
the methodology and illustrate it in application to simple alkali halides. 
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2. The technique 

2.1, The model 

For the present, we envisage treating the polarization effects as an embellishment of a rigid- 
ion treatment; i.e. we imagine that short-range repulsion and also dispersion interactions 
are contained in an effective pair potential which acts between the ionic centres where the 
formal ion charges also reside. We mimic the induced multipoles with a set of variable 
charges at fixed separations from the ionic centre. Thus an induced dipole is represented 
by a rod of fixed length, free to rotate in space, with a pair of variable charges of equal 
magnitude but of opposite sign on its ends. The rod is chosen to be sufficiently short 
that higher-order multipoles are negligible. Thus the three degrees of freedom required to 
represent the components of the dipole are given by the charge magnitude, q, and the two 



Polarization effects in ionic systems 2689 

polar angles which specify the rod orientation. Higher-order multipoles can be represented 
by higher-order rigid polyhedra in the same way: for example, an ion with an induced dipole 
and quadrupole can be represented by an octahedron of variable charges with the constraint 

9i = 0; the requisite eight degrees of freedom being the five free charges and the three 
Euler angles necessary to specify the orientation of the octahedron. The reason for using 
a fixed framework and variable charges rather than the normal shell construct of charges 
on springs is to avoid the possibility of developing spurious (or uncontrolled) higher-order 
multipole moments because of over extension of the spring. For simplicity, in this work we 
restrict our attention to induced dipoles; the generalization to higher-order multipoles will 
be the subject of a future publication. 

2.2. Extending the Lagrangian 

In the CP method we include the variable charges and the angles defining the orientation 
of the polyhedron on which they sit as additional degrees of freedom via an extended 
Lagrangian formalism. The time derivatives of these extra variables, therefore, generate 
extra kinetic energy terms which we shall refer to as the ‘fictitious’ kinetic energy (FKE). 
The full kinetic energy, which contains the contribution from the translation of the ions as 
well as the FKE is: 

6 

where i labels the ion and i y  labels the variable charge y on ion i .  N ,  is the total number 
of ions in the system and Nsile5 is the number of variable charge sites per ion; since here we 
deal only with dipoles, NsiI,, will equal two. The mass of the ion is represented by mi and 
the linear velocity by vi .  The angular velocity of the polyhedra is represented by o; and m, 
is the inertia associated with the variation of the magnitude of the variable charges. Iq is 
the moment of inertia of the polyhedron. This ‘mass’ has no physical meaning but affords 
us the means of generating Newtonian equations of motion for the degrees of freedom of 
the additional terms. Notice also that the mass associated with the charge variation and that 
associated with the polyhedron rotation need not be the same. 

The potential terms which involve the additional degrees of freedom are chosen by 
following ideas discussed by Sprik and Klein [IO]. For induced dipoles only, the total 
potential energy (U) is 

where ~i labels the centre of the ion i and T ; ~  labels the variable charge y on ion i. Here 
u(r;j) is the short-range part of the normal ion-ion pair potential which includes the short- 
range repulsion due to overlap of the charge clouds and the dispersion interaction; it will 
typically be a Born-Mayer potential 
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where the parameters Bi j ,  uij, Cjj and Dij have their usual meaning [I] .  The second term is 
the Coulomb energy of the formal charge Qi on ion i, where V c ( r ; )  is the total Coulomb 
potential due to the formal and variable charges on the other ions at the centre of ion i 
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The third term in equation (2) involves a potential V acting on each fictitious charge. In 
the simplest case, where we q u i r e  only the dipoles induced by the Coulomb interaction, 
V ( r i , )  would simply be the total Coulomb potential, V C ( q , ) ,  at the site of the fictitious 
charge y on ion i arising from all charges in the system except those belonging to the same 
ion: how V may be modified to allow for the overlap-induced dipoles will be discussed 
below. The final term in U is a purely intraion potential which gives the energy required 
to polarize the ion. 

The equations of motion of these degrees of freedom may be derived by the procedures 
of Lagrangian mechanics (L = 7 -U is the Lagrangian). For the rotational motion it is 
straightforward to derive the usual rotational equations of motion for a rigid rod [15]. 

I q b i  = ri ( 5 4  

where dry is the vector from rod end to rod end on ion i and r; is the torque on rod i. 
These were integrated via a quaternion algorithm 1161, a procedure that may be used when 
higher-order multipoles are involved. 

For the charge variation, the Lagrange-Euler equation for charge iy now reads: 

- 0  y = 1 , 2  
d ac ar. 

For each rod we have a pair of equations corresponding to y = I ,  2. If we apply the 
constraint that 9il = -9i2 9i and subtract the y = 2 from the y = I equation then: 

mq(4;il - # i d  = -kq(qil - q i ~ )  - ( V ( r i d  - V ( r d )  (7) 

or 

mqqi = -49i - ( V ( r i I )  - V ( r i z ) ) / Z .  (8) 

In order to see how this construct can represent the desired polarization effects we 
consider the simple case of pure Coulomb-field-induced dipoles. In this case the potential 
at the site of each rcdend charge, V c ( r i l ) ,  can be found by Taylor expanding the total 
Coulomb potential about the ion centre, giving: 

mqq; = -kq9i + Ec(ri) . d;/2 (9) 

where E c ( r ; )  (= -V, V c ( r ; ) )  is the electric field at the centre of the ion and di is the 
vector joining the rod ends. For a given Coulomb potential the additional dynamical degrees 
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of freedom are at equilibrium when L& and iii are zero. When this is true equations (9) and 
(5b) give 

k99i = Ec(ri) -di/Z 

and 

Hence, 

di X Ec(Ti)  = 0. 

is parallel to the electric field and the in 

pi = EC(r;)d;/2k9. 

I iipole pi  = 9idi is given 

If df/Zkq is chosen to be equal to the ion polarizability, U, the induced dipole is given 
by ffEC(r;) and, as can be seen by substituting into equation (Z), the induction energy 
is -fff(EC(~i))*. Both of these are the correct expressions for the ion polarization in an 
external field. If all dipoles satisfy this condition then the electric field that they genemte 
will include the full self-consistent ion polarization effects. We denote the value of the 
field obtained when the condition is satisfied as E'. We dub this condition the udiabutic 
condition because, if it is satisfied during a dynamics run, the ion polarization will have the 
value required by the ion positions. When this condition holds, the dipoles on the ions will 
attain their full self-consistent values and the induction energy of the real system will be 
correct. The equations of motion for the ion positions read 

that is 

where we have Taylor expanded the potential about the centx of i and use pi = qidi. 
Consequently we see that the induced dipoles contribute to the induction forces on the ions 
in the correct way provided that the adiabatic condition holds. 

2 3 .  Application of the Car-Purrinello method 

The Car-Paninello (CP) method of ab inifio molecular dynamics [8,9] is suggestive of a 
way of maintaining the adiabatic condition during an MD run. The additional degrees of 
freedom in the present calculation play a similar role to the coefficients in the expansion 
of the occupied orbitals in the electronic 8 method [ I l l .  We therefore anticipate that 
by integrating equations (5b). (9) and (13c) simultaneously, with the same (short) timestep 
appropriate for the intemal degrees of freedom and starting from a configuration in which the 
adiabatic condition holds, then as the ions move the additional variables will be automatically 
updated to their new positions on the adiabatic surface. 

We illustrate what happens when this procedure is applied in a run on liquid NaCl 
in figure l(u). The details of the calculation will be given below. The figure shows a 
comparison of the induced dipoles on the ions with the value that this quantity should have 
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Figure 1. Evolution of the induced dipole on a randomly selected ion. The bold curve represents 
the required dipole (equation (14)) whist the lighter curve shows the dipole obtained via the 
polarizable model (U) without and (b) with lhemostaning. 

if the additional variables satisfied the adiabatic condition. The figure illustrates two points. 
Firstly, as the run progresses we see the instantaneous dipole oscillates more and more about 
the adiabatic value. Secondly, we see that the adiabatic value itself becomes increasingly 
oscillatory-this reflects the loss of adiabaticity in the dipoles on olher ions which therefore 
make an erroneous oscillatory contribution to EC(ri) .  Thus, for a component of the dipole 
moment for an ion selected at random, we have 

against the value given by 

C L ~  = qid;.,r (15) 

where n labels the x .  y or z component. Figure 2(a) shows the evolution with time of the 
function 

A& = aE,C(r() - qidi.m (16) 

which gives the departure of the instantaneous value from the adiabatic one. We see that, 
whilst the adiabatic condition is maintained for an appreciable period of time, eventually 
the magnitudes of the induced dipoles stray from the correct value and run out of control. 

Another useful way of monitoring the adiabaticity in CP calculations is to monitor the 
fictitious kinetic energy (T~E). If the dynamics is proceeding smoothly with the adiabatic 
condition maintained, T ~ E  will be small and its value will parallel the translational kinetic 
energy of the ions. This is because the only 'fictitious' motion is that required to update 
the additional variables as the ions move 191. If the additional variables start to depart from 
their adiabatic values. TWE increases-this reflects a 'heating' of the additional variables 
by energy transfer from the ion translational motion. We illustrate this behaviour in figure 
3 (upper curve, with the FKE represented as a temperature) for the same sun as shown in 
figures l (n )  and 2(a). The slow, linear heating which is linked with the instability of the 
dipole values is clearly seen. Although the total energy of the extended system is conserved, 
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Figure 2. Evolution of Ap;,- (equation (16)) with lime for a system (U) wilhoul and (b) wilh 
thermos tau i n g . 

30 

25 

z 2 20 
15 

10 

5 Figure 3. Evolution of lhe temperatures of the lwo 
fictitious systems (rotational and dynamic charge) 

0 1000 2000 3000 4000 5000 with (upper curve) and without (lower) No& 
0 

Steps Hoover &x"nmting. 

due to the transfer of energy from ion translation to the additional degrees of freedom, the 
sum of the kinetic and potential energies of the ions is not conserved. 

The circumstances under which the electronic cp scheme can maintain the adiabatic 
condition for long periods has been discussed by Pastore et al [17]. If the character 
of the equations of motion of the additional variables is oscillatory and if the range of 
oscillation frequencies does not overlap the density of states of the translational degrees of 
freedom of the system studied, then energy transfer between the translational and additional 
degrees of freedom is slow and adiabaticity is maintained for long periods. In the electronic 
case, these favourable circumstances arise if there is an appreciable energy gap between the 
occupied and unoccupied electronic orbitals and if the fictitious inertia parameters are chosen 
sufiiciently small. The converse occurs in metals, where there is no band gap. However, it 
has been shown [ 11,18,19] that in such cases a modified CP procedure, in which the excess 
heat transferred to the additional degrees of freedom is removed by adding 'thermostats' to 
the equations of motion, can maintain adiabaticity during long runs. 

If we examine the equations of motion for the additional variables in the present 
calculation we see that they behave analogously to the metallic situation. Equation (9), 
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Table 1. NaCl potential parameters (in ammic units). 

t +  1.6696 15.582 1.7549 2.9842 
- -  1.6696 128.241 121.17 869.13 
+ -  1.6696 46.168 11.699 51.850 

for the variable charge behaves well, as any departure of the charge from the adiabatic 
value (equation (IO)) will evolve with an oscillatoly character. However, the equation of 
motion for the rod rotation equation (56) is free rotational (in the absence of an external 
field); if this motion is heated, the rod will tend to spin freely. The behaviour of the 
system is therefore reminiscent of electronic CP simulations in metals and consequently we 
adopt the same corrective of applying NosB-Hoover thermostats [20,21] to the equations 
of motion of all degrees of freedom. The target temperature of the ion translational motion 
is the required physical temperature of the ionic system, that of the additional variables is 
a suitable low target value (see 1181 for a discussion). 

Figures l(b) and 2(b) show that the character of the time evolution is influenced by the 
inclusion of thermostatting-they clearly show that the additional variables now adhere to 
their adiabatic values to within an acceptable degree of accuracy. 

3. Details of the calculations 

3.1. Thermostaring the systems 

Nos.6-Hoover thermostats [20,21] were employed on all three systems. Hence equation 
(13c) becomes: 

where 3tms is the translational friction parameter. Similarly, equations (56) and (9) now 
read: 

and 

mqqi = -k,qi + E‘(?) di 12 - {chgmq4 (19) 

respectively. cmt and Cchg are the friction parameters corresponding to the rotational motion 
and the change in the variable charges respectively. These parameters are updated as: 

tji = (Tkin.p/ Tp - I ) /$  (20) 

where ,¶ labels the translational, rotational OT variable charge motion. T,,, is the kinetic 
temperature of the @-system, Tp is the target temperature, and q is the characteristic 
thermostat relaxation time goveming how ‘harshly’ the thermostat tries to keep Tkb.6 = 7’’. 
The parameters chosen will be given in the following section. 
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3.2. Choice of parameters 
Tables 1-5 show the simulation parameters for all the runs discussed. The origin of the 
potential parameten will be discussed below. Tp is the target temperature for the subsystem 
,9 whilst (T,) is the mean temperature of that subsystem over the duration of the simulation. 
The thermostat relaxation times, q,, are taken so as to provide acceptable temperature control 
whilst not allowing the equations of motion to become too stiff. 

Table 2. LiF potential paramelen (in atomic units). 

IO" pair (I 8, Cil Dij 

+ +  1.7696 3.6347 0.07625 0.1119 _ _  1.7696 15.4524 15.1461 63.4132 
+ -  1.7696 8.4501 0.8356 22381 

Table 3. Polarizabilities (in atomic units). 

Lii Nai F- C!- 
U 0.192 1.00 6.18 20.9 

All simulations were performed with cubic periodic boundary conditions [22]. The 
long-range coulombic forces for all the permanent and variable charge interactions and the 
electric fields at the anion rod centres were calculated by means of the Ewald summation 
technique [22]. The Ewald parameter was chosen to be < = 5 .0 /L ,  where L is the length of 
the side of the simulation cell. Around 180 k-points were used in the reciprocal space part 
of the summation. This introduces self-interaction terms between variable and permanent 
charges on the same ion. These were removed in the real-space part of the summation. 

The translational and variable charge equations of motion were integrated via a leap-frog 
algorithm whilst the rotational equations were integrated via a quatemion algorithm. 

3.3. Startup procedure 
Starting from a given configuration of ionic coordinates, we require the self-consistent 
dipoles on each site. This can be achieved very simply by placing the rods on the ion sites 
and allowing them to relax under equations (5b) and (9) whilst keeping the ion positions 
frozen. When a maximum in the FKE is reached, the angular velocities and the charge 
velocities are quenched and relaxation restarted. The system approaches the self-consistent 
energy minimum through a series of such quenches. This is by no means the most efficient 
procedure for this kind of minimization but is very simple to program. Lindan and Gillan 
[Z] have used a conjugate-gradient method to relax the massless shells in a shell model 
calculation. 

3.4. Simulation timings 
Table 6 shows some typical run times for the various modifications of the model described 
in this paper. All runs were performed on an IBM RISC 6000 320H with full preprocessing 
and optimization. The table shows whether only the anions or both the anions and cations 
were considered as polarizable. Nt is the total number of ions and hence Ncharges is the 
total number of charge sites in the system (i.e. three per polarizable ion). CF indicates 
whether current correlation functions were calculated 'on-the-fly'. The time given is for 
one complete time step. 
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Table 4. Simulation parameters for NaCI. 

crysral Liquid 

N"W 10000 I0000 10000 I0000 I 0000 

Tot (K-') 1.0 1.0 2.0 2.0 2.0 
(Trod 0 - l )  1.01 I .01 2.01 2.01 2.01 
Tchp (K-') 0.8 0.8 1.2 1.2 I .2 
(Thg) (K- '1  0.80 0.80 1.20 1 n o  1.21 

AI tau-') 20 20 20 20 20 
d (au-') 0.25 0.25 0.25 0.25 0.25 

Tmms W-') 3 0  1013 1164 1224 1340 
(Trams) (K-')  294.15 1077.44 1163.26 1223.41 1341.52 

N 216 216 216 216 216 
L (au-I) 31.9512 33.1498 35.9329 36.2923 36.9552 

Eh8 5.0 5.0 5.0 5.0 5.0 

p a n s  10000.0 1woo.o 1woo.o IMMo.0 1oooo.o 
rm 1000.0 1000.0 1000.0 lwo.o 1000.0 
rehe lOOO.0 l 0 O . O  1000.0 lwo.0 1000.0 

zt 1ooo.o 1000.0 1000.0 1000.0 1000.0 

Table 5. Simulation parameters for LiF. 

C r Y d  Liquid 

NUCp Uxlw moo 12000 

Tmt U(-') 1 .o 1 .o 5.0 
G t )  (K-') 1.w 1.01 4.99 

Tram W ' )  100 100 1170 
t T n d  (K-') W.25 98.65 1169.24 

W- ) 0.4 0.4 0.5 
(CO) (I(-') 0.39 0.39 0.49 
N 216 216 216 
L (au-') 25.4699 25.4699 26.1236 
AI (%I-') 12 12 10 

0.25 0.25 0.25 
5.0 5.0 5.0 
I00.0 lwo.o 1000.0 

p m  1 0 . 0  IwoO.0 IW00.0 
P 1000.0 1000.0 1ooo.o 
Tchl IWO.0 1000.0 Iw0.0 

Table 6. Typical run times for three modifications of h e  model and the RIM using the same 
optimization procedures. 

Nt O+ U- Nc- CF Ttme 

RIM 216 X X 216 J 1.58 
PM 216 X J 432 x 3.91 
PM 216 X ,/ 432 J 4.28 
PM 216 J J 648 J 8.19 

4. Polarization effects in NaCl and LiF 

The specification of the interion interaction-potential can be considered in two stages. In a 
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perfect cubic crystal the Coulomb field at the site of the ion vanishes by symmetry. Hence, 
induction effects do not contribute to the properties of a perfect crystal. The Bom-Mayer 
potential includes only the overlap-mediated repulsion and dispersion terms besides the 
charge-charge Coulomb potential. The properties of the perfect crystal are sufficient to 
determine the parameters required. The lattice parameter, compressibility and expansion 
coefficient are used as input to determine the Fumi-Tosi parameter set  In a vibrating or 
disordered crystal, or in the melt, however, the induction forces become non-zero. We are 
interested in exploring the postulate that in such systems the short-range and dispersion 
interactions between the ions should take the same values as those determined for the 
crystal, leaving the only parameters to be fixed as those which control the ionic polarization. 
By building a description of the polarization on the basis of ab initio electronic shucture 
calculations on the crystal we hope to identify unambiguously those aspects which determine 
particular observable properties. In this section we neglect the dipoles induced by the short- 
range interionic interactions so that the parameters required are simply ionic polarizabilities. 
Consistent with the above postulate we take these ionic polarizabilities to be the in-crystal 
values calculated ab initio by Fowler and Madden [ 131. We note that studies of interaction- 
induced light scattering from ionic melts has confirmed the essential similarities of the ionic 
polarizabilities in the crystal and melt, at least for the alkali halides [23,24,25]. 

Of course, it would be desirable to establish all the potential parameters ab initio. 
Pyper [ 141 has reviewed the progress which has been made in this direction. For the 
alkali halides the ab initio potentials which emerge agree well with the Fmn-Tosi ones. 
This indicates that the Born-Mayer form captures the essential features required in a cubic 
crystal and that, for crystals of such high symmetry, the crystal properties are sufficient 
for an empirical parameterization. We have used the Fumi-Tosi potentials to simplify the 
comparison with previous work. We note that for other materials, which crystallize in lower 
symmetry, potentials have been parameterized on other types of data, such as lattice energies 
and defect formation energies, and that the accord with ab initio potentials is then often 
poorer. 

r X 

Figure 4. Phonon dispersion curve for NaCl 
a 300 K. Crosses correspond to the model 
which includes the Coulomb-field-induced 
dipoles only. whilst the circles are for an 
RI simulation under h e  same conditions. 

In this section we survey the extent to which the inclusion of polarization effects, 
neglecting any dipoles induced by short-range interactions, improves the representation of 
simple ionic systems over the rigid ion model, i.e. the simple Fumi-Tosi potential (RIM). 
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Figure 5. Radial distribution functions for the NaCl 
0 2 4 B 8 IO I2 14 16 16 system from the polarizable model. -, sac&); 

r/au .... .gN.n(r): ' . . ' ' I  . gNaNa(r). 

4.1.  Crystalline NaCI 

The well-known effect of ionic polarization in a vibrating crystal is to reduce the splitting of 
the longitudinal and transverse optic bands. In a primitive model of the crystal the splitting 
at the Brillouin zone centre is given by 

2 2 2 oLo - o, = 4np e la, 

where p is the ion-pair number density, e the electronic charge and E, the high frequency 
dielectric permittivity. For unpolarizable ions E, = 1, whereas for crystalline NaCl 
E- = 2.2 [26]. 

Figure 4 shows the optical components of the phonon dispersion curve calculated from 
the longitudinal and transverse charge current correlation functions for the RIM and for the 
polarizable model described above. Jacucci et al [4] have previously compared RIM and 
shell model dispersion curves for this system. We see that the m-m splitting has been 
reduced by including the induction effects. However, the improvement in agreement with 
the experimental dispersion curves over the RIM is not as good as that obtained by Jacucci 
el af (see figure 3 of [4]). If we focus on the [00(] branch we see that both the Lo and TO 
frequencies seem to be down-shifted uniformly between the r point and the zone boundary. 
In the shell model calculations the TO phonons appear at similar frequencies to the RIM 
whereas the Lo phonons are down-shifted at the zone centre and barely changed at the zone 
boundary. We will see later that including overlap-induced dipoles substantially improves 
this situation. 

4.2. Molten NaCl 

Figures 5 and 6 show the partial radial distribution functions for the rigid ion and the 
polarizable model. The same interaction potentials were used in the simulation of molten 
NaCI; the physical conditions are given in .table 4. The most striking effect is seen to be the 
broadening and inward shifting of the first peak in g++ and the inward shift and reduction 
in height of g+-. A reduction in the similarity of g++ and g-- with respect to the RIM 
seems to be indicated by experimental data [27] (a detailed comparison is shown in figures 
15 and 16 of [ll). However, the inward shift of g++ does seem to be more pronounced in 
the polarizable model than is observed experimentally. Overall, it seems as if the general 
changes in the fluid structure as a result of including induction effects are in the direction 
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Table 7. Nat diffusion mefficients compared with previous RI simulation and experimentlr 
results (in units of IO-> cmz s-l). 

T (K-I) Polarizable model RI model Experiment 

1 I73 12.2 9.7 11.1 
1224 15.2 10.8 13.1 
1340 18.2 14.1 17.3 

Table 8. CI- diffusion coefficients compared with previous RI simulation and experimentd 
ESUIIS (in units of IO+ an2 5-l). 

T (K-') Polarizable model RI model Experiment 

1173 10.1 8.6 6.0 
1224 10.4 9.8 9.6 
1340 16.1 122 12.9 

indicated by experiment but that the magnitude of these changes is too large in the absence 
of short-range induced dipoles. 

Tables 7 and 8 show diffusim coefficients calculated from the gradient of the mean- 
square displacement in the linear region for Nat and CI- respectively. Also shown is data 
for a rigid-ion simulation [ZS] and experiment [29]. Both the cation and anion values are 
systematically higher than experiment. 

Figure 7 shows the behaviour of the induction energy of the system for various 
statepoints (i.e. the total energy associated with the ionic polarizability) with the experimental 
melting temperature, T,, shown for comparison. This emphasizes the important role of the 
induction terms in the thermodynamics of melting. 

4 3 .  Mnlten LiF 
We also attempted a simulation of molten LiF with a polarizable potential (neglecting 
short-range induced dipoles). We omitted the very small lithium cation polarizability in this 
model. This calculation failed in the sense that anions and cations were found to approach to 
unphysically short separations (this does not occur with the RIM). The origin of this problem 
is the fact that the lithium cations have small ionic radii and can make close approaches 
to the fluoride anions in the melc in the polarizable model this results in the induction of 
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very large dipoles and consequently very large attractive induction forces which overcome 
the short-range repulsion in the Fumi-Tosi potential. 

5. Dipoles induced by short-range interactions 

The above results indicate that the simple model of polarization effects. in which the 
induced dipoles are calculated from the Coulomb field at the centre of the ion, has 
significant shortcomings. In particular it appears not to describe correctly the effects of 
ionic polarization on the coulombic interactions in crystals and can break down for typical 
ion configurations in the melt-the ions become over-polarized. The model neglects the 
dipoles induced by short-range overlap effects-which should oppose the Coulomb-field- 
induced dipoles (at least for cation-anion contacts). In the shell-model account of ionic 
polarization, the short-range damping of the induced dipoles is handled by placing the site 
of the short-range potential ( U ; , )  on the shell charge, rather than at the centre of mass 
of the ion. This nd hoc procedure links the magnitude of the overlap-induced dipoles to 
the interionic potential in a way which is overly restrictive and can lead to difficulties in 
parameterization, 

Fowler and Madden [30] investigated the short-range induced dipole (i.e. the part of the 
dipole not induced by the Coulomb field and its gradient) in a series of electronic structure 
calculations on distorted LiF clystals. They demonstrated that it could be viewed as the 
result of an additional potential (dubbed the 'dent-in-the-wall term') and that the effect of 
several ions was approximately additive. These findings suggest that these dipoles can be 
incorporated into the present model by adding a term to Vc in equation (4). i.e. we write 

where f ( r )  is a suitable short-range function which will be chosen to take a limiting value of 
- 1 as r -+ 0 and to reproduce the ab inirio dipoles calculated by Fowler and Madden when 
r is in the range of nearest-neighbour separations. By following the same argument used 
to link the induced dipole to the Coulomb field (equations ( 9 x 1  I)) it is straightforward to 
show that, at the adiabatic condition, the induced dipole will now be: 
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By choosing this form for the short-range potential and an appropriate small-r limiting 
behaviour of f (r) we ensure that the short-range term cancels the Coulomb effects if two 
ions should approach to unphysical separations-this should prevent the kind of catastrophic 
overpolarization found in the LiF calculations discussed above and would mean that the 
induced dipoles at physical separations include both the Coulomb-field and overlap-induced 
dipoles correctly. 

A convenient form for f (r) was introduced by Tang and Toennies [31] as a damping 
function for dispersion forces: we set 

which has the properties outlined above and determine the sole parameter b for LiF by 
requiring that the dipole obtained from equation (23) for a distorted crystal agree with those 
calculated by Fowler and Madden [ 13,321. The value forb obtained in this way is 1.0835au. 

Figure 8. Comparison of the induced dipole 
moment for a cation-anion pair for pure Coulomb 
field induction, in the shell model and with the 
ab initio parameenzed model (equations (U) and 

O 2 6 8 lo 12 (24)). ~eccrystalghl,u(r)functionissuperimposed 
in order to judge the range of the effect r/au 

In figure 8 we compare the magnitude of the dipole induced in a fluoride ion when 
a lithium ion approaches it; we use the in-crystal F polarizability and the short-range 
function f chosen to f i t  the ab initio short-range, in-crystal induced dipoles as discussed 
above. Also shown in the figure is the cation-anion radial distribution function for molten 
LiF (RIM) and the dipole induced by the interionic Coulomb field (as in the polarization 
model discussed in section 2). We see that the modification of the induced dipole in the 
range of nearest-neighbour separations is dramatic. Note too that, by virtue of the form 
of f, the total induced dipole is quenched when the ions make close approaches-within 
the range of the sum of ionic radii: this should prevent the overpolarization effect found 
when the short-range term is ignored. We also show in figure 8 the induced dipole which 
would be obtained in the shell model (with the parameters given by Sangster and Dixon 
[I]). At long range, the induced dipoles are in reasonable agreement (this reflects the fact 
that the ion polarizability implicit in the shell potential is close to the ab initio value (6.90 
versus 6.18 au)). At short range, the shell-model dipole also includes a term due to the 
spring extension caused by the force exerted on the shell by the short-range (Fumi-Tosi) 
potential. We see that the major beneficial effect of this term is to damp and even reverse 
the sign of the dipole, relative to the Coulomb-field-induced term. This means that the 
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induction force between the ions will switch from being attractive to repulsive when the 
ions approach closely and prevent the overpolarization effects noted above. However, we 
see that the dipoles predicted by this ad hoc representation of the short-range effects leads 
to values for the induced dipoles in the nearest-neighbour regime which are completely at 
variance with the ab inirio values. Note also that the damping is still significant at the 
second-nearest cation level. A distorted crystal calculation at this distance gives a value of 
the total dipole of I .7% different from the purely coulombic value compared with 2% from 
Fowler and Madden 1301. 

With the inclusion of the additional term, the third term in the potential energy function 
(equation (2)) now reads: 

M Wilson and P A Madden 

The extra term, therefore, leads to extra forces and torques in addition to those included in 
equations (5h), (9) and ( 1 3 ~ ) .  Specifically, equation (9) becomes: 

equation (5b) becomes: 

and there is an extra force term in equation (13c) given by: 

We will now demonstrate the effect of including the overlap-induced dipoles on the 
properties of LiF. 

5.1. Crystalline LiF 

Figure 9 shows the phonon dispersion curve for LiF along the three main high-symmetry 
directions for both the polarizable model and the RIM. We note that th LO-To splitting has 
been greatly reduced. We note also that the (IM)) To mode is now raised with respect to the 
TO from the RIM calculation. This is the opposite of the effect seen in the NaCl calculation 
of section 4.1 where only Coulomb-field-induced dipoles were considered. This raising of 
the To mode is consistent both with experiment and previous shell-model calculations. 

Figure IO shows the phonon dispersion curve along the (100) direction only for the 
full polarizable model, the RIM, and a polarizable model with the short-range parameter 
b = 2.0 providing an extreme short-range damping to prevent catastrophic overpolarization 
but reproducing the Coulomb-field-induced dipoles at physical separations. We note that 
the effect of the short-range function on the short-wavelength U) mode and the whole TO 
mode is dramatic. In the TO case the mode is lowered with respect to the RIM as was seen 
earlier for NaCI. Therefore, we postulate that if the short-range effects were included in 
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our model the To mode would be raised and thus the I&To splitting would be consistent 
with experiment. 

The varying influence of the short-range dipoles across the Brillouin zone can be 
understood in the following way. We need to think of the energetics of a distortion of 
the charge density at different wavelengths. At the zone boundary, adjacent anions and 
cations are displaced in opposite directions and the dominant source of the induced dipoles 
is this nearest-neighbour displacement. We have seen (figure 8) that the Coulomb-field- 
induced dipole at the nearest-neighbour separations is much larger than in reality due to the 
opposing overlap-induced term. Hence, in the absence of the short-range term, the effect of 
the ionic polarizability on the energetics of lattice distortions at the zone boundary will be 
overestimated. Closer to the zone centre, the relevant ionic interactions will be relatively 
long ranged and adequately described by the simple Coulomb model. 

5.2. Molren U F  
In figures 11 and 12 we compare the radial distribution functions for molten LiF calculated 
with the full, ah initio parameterized polarization model described above with those obtained 
from the RIM simulations at the same statepoint. We note that the excessive effects of the 
ionic polarization on the liquid structure, found when the overlapinduced dipoles were 
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neglected (i.e. the instability of the LiF simulations and the marked shifts in g+- and g++ 
in NaCI, have now disappeared). This is because the net induced dipoles arising from first- 
neighbour cation-anion interactions have been greatly reduced (see figure 8). The radial 
distribution functions resemble the RIM ones quite closely, the only significant effect appears 
to be an increase in the height and inward shift of g+-. Since there is no experimental 
data on the structure of molten LiF we cannot confirm these findings directly. However, 
in NaCl we noted that the inward shift of g,.+ with respect to the RIM result, From the 
coulombic induction effects, did not seem to be confirmed by experiment [271 (although 
g++ did seem to be broader than g--). and that the experimental results seemed to indicate 
a lower peak in g+- than found in the R1M. Since NaCl has a more polarizable anion than 
LiF we might anticipate that the structure we would find in this case would be intermediate 
between the RIM and the purely coulombic induction model and hence in better agreement 
with experiment than either. 

The diffusion coefficients, again calculated from the ion mean square displacement 
functions were found to be D+ = 8.2 x cm2 s-' and D- = 6.3 x IO-' cmz s-l 
compared with the R I M  values of 10.1 and 8.8, respectively. Thus, the ions appear to be 
moving more slowly in the polarizable model. We note that such a finding is consistent 
with earlier shell-model calculations on LiCl 1231. 
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6. Conclusion 

We have shown how ab inirio parameterized representations of induced dipoles can be 
incorporated into the interionic force field used in simulations of ionic systems in a 
computationally tractable way. This is achieved by a classical adaptation of the Car- 
Parrinello method. The dipoles are fully self-consistent and so include the many-body 
aspects of the induction forces. We have indicated how the method can be generalized 
to deal with higher-order induced multipoles. The dipoles induced by both the interionic 
Coulomb-field and the short-range overlap effects may be included. 

The method was applied to the relatively simple examples of LiF and NaCI: the phonon 
dispersion curves in the crystal and radial distribution functions for the melt were examined. 
The parameters which determine the induced dipoles were taken from electronic structure 
calculations on crystals. We have showed that the values of the short-range dipoles captured 
in the shell model differ markedly from the ab initio values. Neglect of the overlapinduced 
dipoles had catastrophic consequences for LiF, where the cations and anions tended to 
collapse onto each other under the influence of the induction forces. In the crystal the 
expected improvement in the D T O  splitting over rigid-ion simulations (RIM) was obtained; 
for small wavevectors the inclusion of the short-range dipoles appeared to have little 
effect and the zone boundary splitting was close to the value expected from the Lyddane- 
Sachs-Teller expression, modified for the high-frequency dielectric constant At higher 
wavevectors, the dispersion relationship predicted with and without the short-range terms 
differed appreciably. Unfortunately, we were unable to find experimental data for LiF with 
which to compare these findings in detail. In the liquid, we found appreciable differences 
between the radial distribution functions obtained for NaCl with the rigid-ion model when 
the Coulomb-field induction was included In particular, there was a marked inward shift 
and broadening of the first peak of g++; the experimental results appear to show that this 
tendency is too strong. The overlap-induced dipoles correct this problem and restore the 
radial distribution functions to closer similarity with the RIM results (at least in LiF). 

We cannot claim that the model for the induction effects we have employed is fully 
vindicated by experimental findings. The experimental data for LiF, for which we have a full 
ab initio model, is not sufficiently complete for a full comparison. For NaCI, for which more 
data is available, we do not have a model for the overlap-induced dipoles. We are presently 
working to improve this situation in two respects. Firstly, the properties of the induced 
dipoles may be observed directly in far-infrared spectroscopy (and the induced dipoles 
also contribute to the frequency-dependent conductivity). Data on both these properties 
are available for molten LiF and we will present a comparison with simulation results 
shortly. Secondly, we are developing interaction potential models for a wider range of 
more-polarizable alkali and alkaline-earth halides with the aid of further electronic structure 
calculations; these will form the basis of wide-ranging structural and dynamical studies. 
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